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This paper investigates the three-dimensional stability of the wake behind a
symmetrically confined circular cylinder by a linear stability analysis. Emphasis has
been placed on discussing analogies and differences with the unconfined case to
highlight the role of the inversion of the von Kármán street in the nature of the
three-dimensional transition. Indeed, in this flow, the vortices of opposite sign that
are alternately shed from the body into the wake cross the symmetry line further
downstream and they assume a final configuration which is inverted with respect to
the unconfined case. It is shown that the transition to a three-dimensional state has
the same space–time symmetries of the unconfined case, although the shape of the
linearly unstable modes is affected by the inversion of the wake vortices. A possible
interpretation of this result is given here.
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1. Introduction
The flow around a bluff body that is symmetrically confined in a plane channel

may show several peculiarities if compared to the unconfined case, and particular
attention is paid here to the inversion of the von Kármán street which may take
place downstream of the cylinder when alternate vortex shedding from the body
occurs. More precisely, vortices are alternately shed in the wake as also in the
unconfined case, i.e. if we imagine the flow to be from left to right, clockwise and
counterclockwise vortices are shed from the upper and lower sides of the cylinder,
respectively. However, at a certain distance along the wake, depending on both the
Reynolds number and the blockage ratio, the trajectories of the two families of vortices
intersect and, further downstream, their position with respect to the symmetry line
is inverted, i.e. counterclockwise and clockwise vortices are positioned in the upper
and lower half of the wake, respectively. This phenomenon has been studied in detail
for square cylinders in Camarri & Giannetti (2007) and in Suzuki et al. (1993) and
has been observed for circular cylinders, too (see for instance Rehimi et al. 2008;
Zovatto & Pedrizzetti 2001); moreover, it continues to exist even when the wake is
three-dimensional (see Rehimi et al. 2008 or Buffoni et al. 2006).

In the authors’ opinion, the three-dimensional transition of the wake of a confined
bluff body in which the inversion of the von Kármán vortices takes place is extremely
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Figure 1. Flow configuration, frame of reference and computational domain (not to scale).

interesting to be investigated, as the peculiar configuration of the vortices in this kind
of wake might lead to an equally peculiar transition to a three-dimensional state. To
the best of the authors’ knowledge, the experiments of Rehimi et al. (2008) are the
only partial investigation of this subject in the literature. They considered a circular
cylinder in a channel with a blockage ratio (ratio between the cylinder diameter
and the channel height) β = 1/3. In that case they showed that the transition to a
three-dimensional state was characterized by modes similar to those observed in the
unconfined case.

In the present work the same flow is considered as a prototype of confined flow
with inversion of the wake vortices, but at a more moderate blockage ratio (β = 1/5),
in order to avoid peculiar flow features related to a complex interaction between
the wake and the confining walls, as discussed in Camarri & Giannetti (2007). The
transition of the considered flow to a three-dimensional state is investigated here by
a linear stability analysis, and great emphasis is placed on discussing the analogies
and the differences with respect to the unconfined case so as to highlight the role of
the vortex inversion in the nature of the transition process. In the unconfined case,
two successive types of secondary instabilities have been identified in the classical
experiments documented in Williamson (1988, 1996). Those experiments motivated
numerical three-dimensional stability analyses of that wake, such as, for instance,
those documented in Noack & Eckelmann (1994) or Barkley & Henderson (1996).
As concerns the physical nature of the three-dimensional instability of the wake,
although an intense debate on the subject still exists in the literature, an interpretation
is proposed in Williamson (1996) and is further supported in Thompson, Leweke &
Williamson (2001). In particular, these authors suggest that mode A is related to a
cooperative elliptic instability of the forming counter-rotating vortices while mode B
is caused by an hyperbolic instability of the braid shear layer.

The two-dimensional flow around the configuration considered here has also
been investigated in several studies (see for instance Chen, Pritchard & Tavener
1995; Zovatto & Pedrizzetti 2001; Sahin & Owens 2004) and, to the best of the
authors’ knowledge, its three-dimensional stability limit has never been studied for
the considered blockage ratio; this quantitative information is a useful, even if
secondary, output of the present analysis.

2. Flow configuration, governing equations and numerical tools
The incompressible flow around an infinitely long circular cylinder, symmetrically

confined by two parallel plates with an incoming Poiseuille flow, is considered here.
With reference to figure 1 the blockage ratio is β = D/H =1/5 and the Reynolds
number is defined as Re =UcD/ν, ν being the kinematic viscosity of the fluid.

The transition of the considered flow from a two-dimensional to a three-dimensional
state is investigated by a standard Floquet analysis. In particular, for a given
Reynolds number above the critical one for primary instability, the two-dimensional
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time-periodic flow field Q = {Ub, Pb} (velocity Ub(t) and pressure Pb(t)) is computed,
T being the corresponding period. A three-dimensional perturbation field q = {u, p}
is then considered, and its Fourier transform in the homogeneous spanwise direction
(z) is assumed to have the following form: q(x, y, κ, t) = q̂(x, y, κ, t) exp (σ t), where k

is the wavenumber in the z direction, σ ∈ � is the Floquet exponent and q̂ = {û, p̂}
is periodic in time with the same period T as the base flow. When the equations
governing the dynamics of the disturbance q, which is superposed on the base flow Q,
are linearized and Fourier-transformed in z, the following set of equations is obtained:

∂ û
∂t

+ σ û + Ub · ∇κ û + û · ∇κUb − 1

Re
�κ û + ∇κ p̂ = 0, (2.1a)

∇κ · û = 0, (2.1b)

where ∇κ ≡ (∂/∂x, ∂/∂y, iκ) and �κ ≡ ∇κ · ∇κ are the Fourier-transformed gradient
and Laplacian operators, respectively. The above equations are completed by
homogeneous boundary conditions on the solid walls, appropriate far-field radiation
conditions, and the periodicity constraint for q̂ in time. The resulting problem is thus
an eigenvalue problem. The flow is linearly unstable at a given Reynolds number if
at least a non-trivial solution of (2.1) exists, for a particular value of k, such that the
norm of the associated Floquet multiplier μ = exp (σT ) is greater than 1 (‖μ‖ > 1).

In the following analysis, information coming from the solution of the adjoint equa-
tions associated with the system (2.1) is used too. In particular, it is assumed that the
form of the flow field adjoint to q(x, y, k, t) is g+(x, y, κ, t) = ĝ+(x, y, κ, t) exp(−σ t),

where ĝ+ = {f̂+
, m̂+} is periodic in time with the same period T as the base flow.

Consequently, the set of equations adjoint to (2.1) has the following form:

∂ f̂
+

∂t
− σ f̂

+
+ Ub · ∇κ f̂

+ − ∇κUb · f̂+
+

1

Re
�κ f̂

+
+ ∇κm̂

+ = 0, (2.2a)

∇κ · f̂+
= 0, (2.2b)

with homogeneous boundary conditions on the cylinder surface, appropriate radiation
conditions in the far field and the periodicity constraint for ĝ+ in time. We refer to
Luchini, Giannetti & Pralits (2008) and Giannetti, Camarri & Luchini (2009) for the
derivation of (2.2).

The two-dimensional incompressible Navier–Stokes equations, their linearized
version (2.1) for three-dimensional perturbations that are periodic in the spanwise
direction and the corresponding adjoint equations (2.2) are discretized in space,
in conservative form, on a staggered Cartesian mesh by a standard centred and
second-order-accurate finite-difference scheme. The cylinder surface is simulated by an
immersed-boundary technique that preserves second-order accuracy (see Giannetti &
Luchini 2007). For the simulation of the two-dimensional base flow, the velocity field
is forced to have a Poiseuille profile at the inflow, while it vanishes on the channel
walls, and convective boundary conditions are applied on the outflow boundary. For
the simulation of the linearized equations, the velocity field is also forced to vanish
at the inflow. The resulting semidiscrete equations are advanced in time by a hybrid
third-order Runge–Kutta/Crank–Nicolson scheme. Once discretized, the linearized
equations (2.1) (adjoint equations (2.2)) become a discrete eigenvalue problem. The
Floquet multipliers have been numerically evaluated in this work by using both
a power method and the implicitly restarted Arnoldi method implemented in the
ARPACK library. Since in our code we solve the adjoint of the discrete equations (2.1),
the Floquet multipliers for the direct and adjoint problems are equal to machine
accuracy. All the codes used in the present work have been widely validated in the
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Figure 2. Norm of the Floquet multiplier μ as a function of the wavenumber k at Re =300
obtained on the grid GRC.

case of the unconfined circular cylinder (Giannetti & Luchini 2007; Luchini et al.
2008; Giannetti et al. 2009) and of a confined square cylinder (Camarri & Giannetti
2007).

3. Results and discussion
A computational domain has been chosen with Li = 12.5 D and Lo =35.5 D,

which is similar to the ones selected in other studies on the same flow documented
in the literature (see for instance Chen et al. 1995; Zovatto & Pedrizzetti 2001). Two
stretched Cartesian grids have been used in the present study. The coarser one (GRC)
has 495 (Nx) and 196 (Ny) points in the x and the y direction, respectively, with a
resolution varying from (�xmin = 1.3 × 10−2 D, �ymin =1.7 × 10−2 D) on the body to
(�xmax = 2.2 × 10−1 D, �ymax = 6.2 × 10−2 D) at the outflow boundary. The finer grid
(GRR) is obtained by increasing the resolution near the body and in the far wake,
and it is characterized by Nx = 660, Ny = 280, �xmin = 1.1×10−2 D, �ymin =1.4×10−2,
�xmax = 1.9 × 10−1 D and �ymax = 3.0 × 10−2 D. The grid resolution of GRR on the
cylinder and in the near wake is very similar to that used in Giannetti et al. (2009) for
the Floquet stability analysis of the unconfined case, for which the present numerical
tools are shown to provide results in very good agreement with the literature. As for the
temporal discretization, �t � 1 × 10−2D/Uc and �t � 8.5 × 10−3D/Uc have been used
with GRC and GRR, respectively. For a further validation of the numerical tools and
the grids used, a simulation was carried out at Re = 300, which is larger than the values
of interest for the present study, and the resulting Strouhal numbers (St = f D/Uc,
f being the vortex-shedding frequency), equal to St � 0.2036 and St � 0.2032 for
grids GRC and GRR, respectively, are in good agreement with the value St � 0.199
obtained in Zovatto & Pedrizzetti (2001) and indicate grid convergence for St .

As a first analysis, the norm of the dominant Floquet multiplier has been evaluated
as a function of the wavenumber k of the disturbance at Re = 300 using the grid
GRC; the results are reported in figure 2. All the unstable multipliers are real and
there are two clearly separated bands of unstable modes, centred at k � 1.3 and
at k � 7. The band of modes centred at k � 1.3 first becomes unstable at a critical
wavenumber kA � 1.35 and at a critical Reynolds number ReA. Using grids GRC
and GRR, we estimated ReA � 201.2 and ReA � 200.5, respectively. At Re = 201 the
Strouhal number changes only at the fourth decimal unit in passing from grid GRC
to grid GRR, its value being St � 0.193. An analysis of the space–time symmetries of
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Figure 3. Space–time reconstruction of streamwise vorticity ωx(x, y, z, t) passing in time
through the section x =2D (grid GRR) for (a) mode A (k = 1.35, Re =204) and (b) mode B
(k = 7.325, Re = 256); dark and light colours indicate negative and positive values, respectively.

the unstable mode at (k = 1.35, Re =204) using grid GRR reveals that this mode and
the band of unstable modes centred around k � 1.3 have the same symmetries of the
mode A in the unconfined case, i.e.

û(x, y, k, t) = û(x, −y, k, t + T/2), (3.1a)

v̂(x, y, k, t) = −v̂(x, −y, k, t + T/2), (3.1b)

ŵ(x, y, k, t) = ŵ(x, −y, k, t + T/2), (3.1c)

in which û, v̂, ŵ are the x, y and z components of the disturbance velocity û and T is
the period of the two-dimensional base flow. Consequently, the axial vorticity ω̂x of the
field û is characterized by the symmetry ω̂x(x, y, k, t) = − ω̂x(x, −y, k, t +T/2). This is
confirmed by the space–time reconstruction of the axial vorticity measured at section
x = 2D, which is plotted in figure 3(a). For this reason we will denote the transition to
a three-dimensional state due to the considered band of unstable modes as ‘mode A’.
The symmetry of mode A is physically explained in Williamson (1996) as the result
of a self-sustaining formation of vortex loops at particular spanwise locations due to
the induction of one vortex loop on a newly forming primary vortex. Note that this
interpretation is also compatible with the inverted arrangement of the wake vortices
of the considered case. Besides symmetries, the wavelength in the spanwise direction
of the critical mode, λA/D = 2π/kA � 4.65, is quantitatively comparable to what is
observed experimentally in Williamson (1996) and to what is found numerically for
mode A in the unconfined case in Barkley & Henderson (1996) (λ/D = 3.96 ± 0.02).
Lastly, although there is a variable inflow velocity profile here and we arbitrarily
based the Reynolds number on Uc (see figure 1), the critical Reynolds number for
mode A so obtained is similar to the one found in Barkley & Henderson (1996) for
the unconfined case (Re � 188.5 ± 1). Summarizing, the analysis of the space–time
symmetries shows that the transition involving modes around k = 1.3 is identical to
what is observed in the unconfined case for mode A. Nevertheless, the shape of the
linear unstable modes is inevitably influenced by the convection caused by the two-
dimensional (time periodic) base flow. In this connection there is a difference between
the confined and the unconfined cases due to the inversion of the wake vortices.
This is highlighted in figure 4, where the streamwise vorticity of mode A is plotted
toghether with the spanwise vorticity of the base flow for the confined (figure 4a) and
the unconfined (figure 4b) case (this has been computed with Re = 190 and k = 1.585;
details are given in Giannetti et al. 2009). The comparison between figures 4(a) and
4(b) clearly shows how the base flow and, in particular, the inversion of the wake
vortices, affects the shape of the unstable linear mode. Details of the distribution of
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Figure 4. Detailed views of the spanwise vorticity (coloured plot) of the two-dimensional
base flow and contours of the streamwise vorticity (dotted lines stand for negative values) of
mode A in the confined (a) and unconfined (b) case. The straight arrows indicate the direction
of the velocity induced by the von Kármán wake vortices of the two-dimensional flow, whose
position and sense of rotation is represented by the circular arrows.

axial vorticity of mode A in figure 4(b) are in good agreement with those shown in
Thompson et al. (2001) and with the flow visualizations in Williamson (1996).

As regards the second band of unstable modes, centred around k � 7 (see figure 2),
this becomes unstable at a critical wavenumber kB � 7.325 and at a critical Reynolds
number ReB , which is found to be equal to ReB � 257.0 and ReB � 255.7 using grids
GRC and GRR, respectively. At Re =256.7 the Strouhal number is St � 0.199 and
changes only at the fourth decimal digit in passing from GRC to GRR. For this band
of modes a different space–time symmetry is found, which is identical to the mode B
type of transition of the unconfined case:

û(x, y, k, t) = −û(x, −y, k, t + T/2), (3.2a)

v̂(x, y, k, t) = v̂(x, −y, k, t + T/2), (3.2b)

ŵ(x, y, k, t) = −ŵ(x, −y, k, t + T/2), (3.2c)

ω̂x(x, y, k, t) = ω̂x(x, −y, k, t + T/2). (3.2d)

This is shown in figure 3(b) by plotting a space–time reconstruction of the axial
vorticity passing at section x = 2D. We will denote the transition to a three-
dimensional state due to the considered band of unstable modes as ‘mode B’ for
its space–time symmetries. A physical interpretation of the symmetry of mode B is
given in Williamson (1996) showing that the axial vorticity on an existing braid shear
layer induces spanwise perturbations on a newly forming braid shear layer which
respect the symmetry of mode B. This interpretation remains compatible with the
position of the braid shear layers found here due to the inverted wake vortices. As
in the previous case, the critical wavelength in the spanwise direction, λB/D � 0.86,
and the critical Reynolds number, ReB � 255.7, are quantitatively very similar to the
corresponding ones in the unconfined case, which are equal to λ/D � 0.82 and to
Re = 259 ± 2 (Barkley & Henderson 1996), respectively. Nevertheless, the inversion
of the wake vortices affects the shape of the unstable linear mode B in the same way
as that in which it influences the shape of mode A (not reported here for the sake of
brevity).

Summarizing, the transition of the wake to a three-dimensional state for the
confined flow considered here is identical to that of the unconfined case, at least
in the explored range of Re (�300) and k (�12), although the two base flows are
significantly different due to the inversion of the von Kármán wake vortices. However,
the different arrangement of the wake vortices leads to different instantaneous shapes
of the linear modes, which are inevitably influenced by the convection caused by the
two-dimensional base flow. A possible interpretation of this result is now proposed;
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it is based on the observation that, at least in the unconfined case, the region of the
base flow that is responsible for the three-dimensional instability of the wake, which
we will denote as the core of the instability, is sharply localized in the near-wake
region. This region has been identified with a combined analysis of the unstable
Floquet modes and of their adjoint modes in Luchini et al. (2008) and in Giannetti
et al. (2009), generalizing the work documented in Giannetti & Luchini (2007) to
include the case of a periodic base flow. Previously, the same region was heuristically
identified in Barkley (2005) where, by carrying out Floquet stability analyses on
progressively smaller domains, it is shown that only ‘small regions of the full flow
just behind the cylinder are responsible for the linear instabilities despite the fact that
the actual linear modes extend many cylinder diameters downstream the cylinder’.
Quantitatively, in Luchini et al. (2008) and in Giannetti et al. (2009) it is shown that
the core of the three-dimensional instability is contained in a region −0.5D <x < 2.5,
−D < y < D (same frame of reference sketched in figure 1), while mode B is localized
slightly closer to the cylinder downwind face than mode A. This information on the
core of the instability suggests the following interpretation of the present results: the
three-dimensional instability originates in a flow region in which the wake vortices
are in a developing stage and, thus, where inversion has not yet taken place. This
might explain the similarity with the unconfined case. Naturally, the base flow affects
the shape of the unstable modes further downstream.

In order to support this interpretation, the core of the three-dimensional instability
has been localized in the considered case. In this connection we have followed the
approach proposed in Luchini et al. (2008) and in Giannetti et al. (2009), which
is now briefly recalled, and the results have been verified by carrying out Floquet
analyses on progressively smaller computational domains, as done in Barkley (2005).
To identify the core of the instability, a localized structural perturbation to the
linearized momentum equation (2.1a) is considered. In particular, indicating with
LHS the left-hand side of equation (2.1a), the considered structural perturbation has
the following form:

LHS = δ(x − x0, y − y0)C0 · û, (3.3)

where C0 is a generic constant (feedback) matrix, the symbol ‘·’ stands for matrix
vector product, (x0, y0) are the coordinates of the point where the feedback acts and
δ(x, y) denotes the Dirac delta function. By carrying out a perturbation analysis of
the variation of the eigenvalue σ caused by the structural perturbation (3.3), using the
properties of the adjoint velocity field f +, we obtain that δσ = C0 : S(x0, y0, k) where
the symbol ‘:’ stands for double contraction of the indices and S is the sensitivity
tensor of the Floquet mode:

S(x, y, k) =

∫ t+T

t

f̂
+
(x, y, κ, t) û(x, y, κ, t) dt

∫ t+T

t

∫
D

f̂
+ · û dS dt

. (3.4)

Note that this definition is independent of the particular feedback matrix C0. The
region of the flow field in which the instability mechanism arises coincides with the
region where the norm of S is significantly different from zero. The spectral norm has
been used here (i.e. the maximum eigenvalue of SH S, SH being the conjugate transpose
of S), but different norms lead to very similar results. The quantity ‖S(x, y, κ)‖ is
plotted in figure 5, which shows that the core of the instability for both modes A and
B is sharply localized in the near wake. Moreover, the quantitative similarity with
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Figure 5. Spectral norm of the tensor field S at each point of the domain for (a) mode A
(Re = 201, k = 1.35) and (b) mode B (Re =256.7, k =7.325) obtained on grid GRR.

the corresponding figures in the unconfined case reported in Giannetti et al. (2009) is
striking.

The statement that only the regions where ‖S(x, y, κ)‖ is significantly different
from zero are important for the instability mechanism has been verified a posteriori
by carrying out Floquet stability analyses on progressively smaller rectangular
subdomains around that region. The Floquet multipliers obtained in the subdomains
are then compared to the reference one obtained on the whole domain. To this
purpose, the considered base flow is always the one computed on the whole domain
and, in restricting it to subdomains, the grid points are left unchanged in order to
avoid interpolation errors. The boundary conditions on each side of the subdomains
are identical to those imposed on the corresponding side of the whole domain. In
a sense, the strategy proposed in Giannetti et al. (2009) has been used here only to
quickly localize this region, so avoiding a trial-and-error procedure. As an example,
we report here the results obtained for mode B at incipient instability. In this case
we considered three subdomains: (i) (−0.6D � x � 2.5D, −1.5D � y � 1.5D), (ii)
(−0.6D � x � 2.0D, −D � y � D) and (iii) (−0.6D � x � 1.3D, −D � y � D).
For the sake of clarity, some grid lines in figure 5(b) correspond to the boundaries
of the listed subdomains. The figure shows that, while (i) and (ii) contain the region
where ‖S(x, y, κ)‖ is significantly non-null, (iii) does not. Passing progressively from
(i) to (iii) the Floquet multipliers obtained are μ = 1.0215, μ =0.9738, μ = 2.883,
while the reference one obtained on the whole computational domain is μ =1.0214
(the relative percentage variations being approximately equal to 0.8 %, −4.7 % and
182 %, respectively). The same analysis has been carried out for mode A (results are
not reported, for the sake of brevity), so validating the region identified in figure 5(a).

To support the interpretation of the results proposed above, the same isocontours of
‖S(x, y, κ)‖ reported in figure 5 have been plotted so as to overlap with the vorticity
field of the base flows of mode A and B in figure 6. For both modes the resulting
pictures clearly show that, in the region where ‖S(x, y, κ)‖ is significantly non-null,
the wake vortices are still in a developing stage and, thus, it is not even possible to
speak about their inversion in that region. In particular, according to our analysis,
mode A and mode B type of transitions would be affected by the confinement only
if its effects would change the base flow in the region where the wake vortices form,
which is evidently upstream with respect to their subsequent inversion. Acting only on
the blockage ratio, this effect is expected only for a large confinement. For instance,
the experiments by Rehimi et al. (2008) show that the nature of three-dimensional
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Figure 6. Spectral norm of the tensor field S (same isolines as in figure 5) and vorticity field
(grey-scale contours) of the base flow for (a) mode A (Re = 201, k =1.35) and (b) mode B
(Re = 256.7, k = 7.325) obtained on grid GRR.

transition is substantially unchanged with respect to the unconfined case also at
β = 1/3. This is confirmed by a Floquet stability analysis that we carried out for
the same case (not reported here) which confirms what is documented in the present
paper for β =1/5. However, we wish to remark that, as the blockage ratio is further
increased, new unstable modes might appear and eventually become dominant in the
transition to the three-dimensional state.

As a final element to support the interpretation of the results given above, we
provide the following quantitative measurement of the similarity between the confined
and the unconfined two-dimensional flows in the region identified as the core of
the three-dimensional instability. A weighted spatial correlation coefficient has been
defined between the vorticity fields of the confined (Ωc) and the unconfined (Ωu) case
corresponding to the same phase of the vortex shedding cycle:

C =

∫
V

Ωc fw ΩudV

√∫
V

fw Ω2
c dV

√∫
V

fw Ω2
u dV

, (3.5)

where fw is a generic (non-negative) weighting function and V is the overlapping
region between the computational domains of the two cases, starting from x = −0.5D

(in order to exclude the inflow region which is not interesting) and ending at
x = 30D. In a first case (C1) we considered fw = fw1, where fw1 is the pointwise
maximum between the norms of the sensitivity tensors (S) of the confined and the
unconfined case. Conversely, in a second case (C2) we considered fw = fw2, where
fw2 is equal to 1 where fw1 < 10−2 max(fw1) and 0 otherwise, thus being a kind
of complementary weight to fw1. The resulting correlation coefficients have been
averaged in time using 20 instantaneous flow fields equispaced on a vortex shedding
cycle for mode A (the two cases documented in figure 4 have been considered). As a
result C1 � 0.987, so showing a high degree of similarity of the two flows in the core
of the three-dimensional instability, which coincides with the vortex formation region.
Conversely, C2 � 0.296, demonstrating that the two wakes are poorly correlated in
terms of vorticity distribution outside the core of the instability. Spatial information
on the similarity between the two vorticity fields has been derived by evaluating their
correlation in time, averaged on one vortex shedding period. The result is reported
in figure 7, which shows that, close to the cylinder in the downstream region, the
time histories of the two vorticity fields are very similar, their correlation being larger
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Figure 7. Correlation in time between the vorticity of the two-dimensional base flows of the
confined and unconfined case in the critical conditions of mode A instability; regions of low
vorticity of the unconfined case have been eliminated (lateral white bands).

than 0.9. Conversely, the correlation becomes negative further downstream, due to
the inversion of the wake vortices in the confined case.

4. Conclusions
In the present work the three-dimensional stability of the wake of a moderately

confined circular cylinder has been investigated by a linear stability analysis and
both mode A and mode B three-dimensional instabilities have been observed. The
associated critical wavelengths and Reynolds numbers are also quantitatively similar
to those found for the unconfined case. However, the instantaneous shape of the
linear modes is different, due to the different arrangement of the vortices in the wake.
A possible interpretation of this result is proposed, according to which the inversion
of the wake vortices does not affect the nature of the instability because its core is
sharply localized in the near-wake region, where the wake vortices are still forming.
The proposed interpretation is supported by the localization of the core of the
instability for both modes A and B, carried out using a technique based on the
combined analysis of the direct and adjoint unstable modes; the resulting regions
have been then verified a posteriori. The experiments by Rehimi et al. (2008) and our
numerical investigation suggest that the conclusions drawn in the present paper are
valid at least for blockage ratios up to β = 1/3. Indeed, the core of the modes A and B
is so close to the cylinder rear face that only an even larger blockage ratio is expected
to influence the flow in that region. However, as β is further increased, the flow soon
experiences significant changes and thus the comparison with the unconfined case
becomes less interesting; as an example, in Sahin & Owens (2004) it is shown that,
already for β � 1/2, the base flow is sensibly different with respect to the unconfined
case, and vortices are shed both from the body and from the confining walls.

The authors are grateful to Professor P. Luchini for his scientific support; the
simulations were carried out thanks to the computational resources of DIMEC
(Salerno).
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